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This paper examines the reasons for the success of a simple iterative computer algorithm 
proposed earlier, that is useful in generating line spectra from the experimental response 
functions commonly used in linear viscoelastic theory. Generating spectra from these 
response functions is mathematically an ill-posed problem because the inversion of the 
response function leads to instabilities in the calculations. The paper identifies those 
regions of the response functions in which experimental and computational rounding 
errors lead to the instabilities and which are thus responsible for the ill-posedness. It 
shows that these regions can be excluded from the calculations without impairing the line 
spectra obtained. 

Keywords: Fredholm integral equations (first kind); ill-posed problems; line spectra; 
viscoelastic response functions 

1. INTRODUCTION 

In a series of earlier papers we had described an iterative computer 
algorithm for obtaining line spectra from the most frequently used 
experimental response functions of linear viscoelastic theory [l - 41. In 
those papers we showed how the algorithm works but did not discuss 
why - in view of the ill-posedness of the inversion of Fredholm integral 
equations of the first kind-it is as successful as it is. It is the purpose 
of this paper to address the latter question. 
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56 I. EMRI AND N. W. TSCHOEGL 

To examine the reasons for the success of the algorithm, we consider 
the (shear) relaxation modulus, 

as a typical example of an experimental response function. The braces 
around the equilibrium modulus, G,, signify that the modulus is absent 
when the material is rheodictic (shows steady-state flow), but is present 
when it is arrheodictic (does not show steady-state flow) [ S ] .  The Hi in 
Eq. (l), are modulus values representing the strengths associated with 
a particular relaxation time, T ~ .  The number, N ,  of such pairs forms the 
set { H i ,  ri; i =  1, 2 , .  . ., N }  that constitutes the discrete relaxation, or 
line, spectrum, H(T~) .  In Eq. (1) the type of excitation, a step function 
of time, is represented by the exponential kernel function, K(t,  T J =  

exp(-t/Ti), where t is the current time. 
If the relaxation times may be deemed to be sufficiently closely 

spaced, the sum in Eq. (1) may be replaced by an integral. We then 
have 

where H(T) is the continuous relaxation spectrum. 
Neither H(T~), nor H(T),  can be determined by direct experiment [5] 

since there is no excitation that would not depend on time in one way 
or another. (Constancy with time is just another form of time- 
dependence). Equation (2) is a specific form of a Fredholm integral 
equation of the first kind. Attempts at inversion, i.e., attempts to 
retrieve H ( r )  from under the integral sign, generally lead to 
instabilities in the calculations because in certain regions of G(t) 
experimental errors and rounding errors in digital computations, 
coupled with the finite resolving power of the computer, may obscure 
the information contained in the concomitant regions of H(T). Thus, a 
small change in the data can lead to a large change in the solution. For 
this reason the inversion is recognized as an ill-posed problem. The 
mathematical theory of ill-posed problems and ways to obtain usable 
solutions has been well treated in the literature [6] and it is not our aim 
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VISCOELASTIC LINE SPECTRA 57 

to review it here. Several specific methods have been proposed to cope 
with the problem as encountered in linear viscoelastic theory. These 
will be reviewed briefly in Section 5.1, where we will also consider 
older, classical methods of approximations to H(T) in the context of 
our own work. 

The algorithm we have described earlier [l-41 is applied to 
equations of the type represented by Eq. (l), the digital (discretized) 
form of Eq. (2). Discretization, of course, does not remove ill- 
posedness. It must have occurred to readers of our earlier publica- 
tions-as it had indeed occurred to us-to ask why the algorithm is 
successful in view of the ill-posedness of the problem it deals with? 
Briefly, we show that in the calculation of a line, Hi, from the given 
response function, here G(t), not all regions of the function contribute 
equally to the instabilities that may affect the calculation of the line. 
We found it possible to localize and exclude the trouble-causing 
regions without impairing the determination of the spectrum. The 
task - as will be discussed in detail below- is accomplished by scanning 
a given data set through, as it were, ‘windows’, and operating only on 
the information contained in them. These windows effectively 
constitute band-pass filters that move along the abcissa. In the 
following section we present this procedure which we call the 
Windowing (or Filtering) Approach. 

A line spectrum calculated by this approach from any of the 
experimental response functions necessarily constitutes an approxima- 
tion to the (unknown) ‘true’ spectrum. However, it can reproduce the 
source function from which it is derived sufficiently closely to be 
eminently useful in practical applications. If determined or known 
over a sufficiently wide range of the time, t ,  (or, equivalently, the 
frequencly, w, of the Laplace transform variable, s) the line spectrum 
derived from a particular response function contains complete 
information on the time dependence of the material, unaffected by 
the type of excitation chosen to elicit the response represented by the 
kernel function. A line spectrum calculated from data generated in 
response to a strain excitation can be converted readily into those that 
will generate the responses to a stress excitation, and vice versa [4]. 
Once a line spectrum has been obtained, the time-dependent part of 
any response function within the same mode of deformation (shear, 
bulk, etc.) is readily obtained from it. 
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58 I .  EMRI AND N. W. TSCHOEGL 

To assemble any desired experimental response the time dependence 
must be supplemented with the so-called viscoeIastic constants [5] such 
as the equilibrium or glassy moduli, G, or Gg, or the equilibrium 
compliance, J,, the steady-state compliance, J,“, and the steady-state 
fluidity, q5h (or its reciprocal, the steady-state viscosity, qf)  as required. 

2. CONTRIBUTIONS OF THE SPECTRUM 
TO THE EXPERIMENTAL RESPONSE 

To understand how certain regions of the response function influence 
the instabilities that may arise in the computations, we begin by 
considering Eq. (2) and examine how particular regions of the 
spectrum, H(T),  contribute to a given point of the relaxation modulus, 
G(2). The contributions are govered by the kernel function, exp(-t/r), 
which, in effect, selects them from H(7). 

The upper portion of Figure 1 displays log G(t), while the lower 
portion shows log H(T). H(T), shown as a continuous spectrum, should 
here be considered to be an envelope over the spectral strengths, Hi. 
We consider now a datum point located at log t k  along the logarithmic 
time scale and two spectrum lines located at log Tk,l and log Tk+ to the 
left and to the right of log tk  = log T k .  The interval [log Tk,l ,  log T k , u ]  is 
the ‘Window’ belonging to the spectrum line located at log Tk.  The 
long-dashed line marked H ( T k , / )  exp ( - f / T k , J ) ,  represents the contribu- 
tion of the spectrum line located at log Tk,l to the datum point at log lk .  

Similarly, the short-dashed line marked H(Tk,u)  exp ( - t /Tk ,u ) ,  repre- 
sents the contribution of the spectrum line located at log Tk,u to the 
same datum point at log t k .  The distances, log Xk,l and log Xk,u, 

constitute the width of the window. Their sizes depend on the type of 
the kernel function. They must be selected in such a manner that the 
contribution by the spectrum line located at log Tk,[  to the datum point 
located at log tk will be negligible, while the contribution of the 
spectrum line located at log T ~ , ~  will make a constant (time- 
independent) contribution to the same datum point. Generalizing 
these observations, we can claim that the contributions to the line at 
log tk  made by all spectrum lines located to the left of log T k , /  will be 
negligible, while all spectrum lines located to the right of log T k,u will 
make constant (i.e., time-independent) contributions. 
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VISCOELASTIC LINE SPECTRA 59 

FIGURE 1 Schematic illustrating the contribution of H(T) to the point G(tk). 

Let now the experimental data be given by M discrete datum points, 
G($), where j =  1,2,3,. . .,M. These are represented in the upper 
portion of Figure 1 by the small filled circles. The solid line 
representing G(t) is obtained by putting a spline function through 
these points. We now focus our attention on a particular point, G(tk), 
shown by the large filled circle located at tk .  Using Eq. (I), this point 
can be modeled in discretized form by 
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60 I. EMRI AND N. W. TSCHOEGL 

The term Ak has been added to account for any experimental errors 
and/or computational rounding errors. We write G(tk) instead of G(tk) 
to indicate that such errors may be present. 

We now split the sum in Eq. (3) to separate the contributions of the 
spectrum to the left of the window, within the window, and to the right 
of it. 

where 1 and u denote the number of spectrum lines located within the 
Window [log Tk,/, log Tk,u], while k indicates the spectrum line located 
at log Tk. 

Since we are concerned here with the exponential kernel function, 
exp(-t/Tk,[), the contribution of the spectrum line located at log Tk,[ is 
already smaller than 3.72 x lo-@ when log X k , )  2 2. In line with the 
discussion above, contributions to the datum point, G(t& from the 
first sum are therefore already smaller than Ak, and thus effectively 
vanish. This is brought out in Figure 1 by the long-dashed line 
representing H(Tk,/) exp(-t/TkJ. The point H(Tk,J) is shown by the 
upper (left) filled square. On the other hand, exp (-t/Tk,u) has already 
reached 0.99 when Xk,u = 2,  and is effectively unity when Xk,u > 2. 
Thus, contributions to G(tk)  from the portion of the spectrum to the 
right of log Tk,u are constant, i.e, time-independent. This is shown in 
Figure 1 by the short-dashed line that represents ff(Tk,u) exp(-t/Tk,,). 
The point f f ( T k , u )  is shown by the lower (right) filled square. When the 
kernel is the exponential function, the distances, log Xk,J and log Xk+, 

are thus conveniently chosen as log 2. 
In view of these observations Eq. (4) simplifies to 

i=k+u i=N 

G( tk )  = {C,} + C Hi exp(-t/Ti) + C H i + & .  ( 5 )  
i=k-/+I i=k+u+l 

Equation (5) shows that contributions to G(tk), apart from Ak, are 
made up of three portions: 
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VISCOELASTIC LINE SPECTRA 61 

(1) the constant contribution from the equilibrium modulus, {Ge},  

(2) time-dependent contributions from the sum within the window, 

(3) the time-independent (constant) contributions from the region to 

that may be absent in a rheodictic material, 

i.e., bounded by log Tk,J and log Tk,u, and 

the right of log Tk,u. 

The situation is depicted schematically in Figure 2. The lower portion 
displays three regions of H(T) marked I, 11, and 111. The portion of the 
spectrum in the first (right-hatched) region to the left of log 7k .J  does 
not contribute to G(t 2 tk) .  The second (cross-hatched) region covers 
the window, i.e., that part of H(T) whose contribution to G(tk) and its 
neighbors to the left and right within the window are time-dependent. 
Finally, the third (left-hatched) region designates that portion of the 
spectrum whose contributions to G(t 5 tk) are constant with respect to 
time. 

These contributions are shown, again schematically, in the upper 
portion of Figure 2 which appropriately repeats the hatch patterns 
employed in the lower portion. Attention should be focused on the 
window. In Region I11 the contributions arise from the second sum in 
Eq. (5) and are time-independent. In Region I1 the contributions come 
from the first sum in Eq. ( 5 )  and are time-dependent, log tk  marking 
the point of steepest descent. There are no contributions from Region I 
since its contribution vanishes. It should be clear, of course, that these 
regions move along the abscissa for each experimental datum point. 

In conclusion: the time-dependent contributions to G(t) within the 
window arise from that portion of the spectrum that is covered by 
the window (Region 11). The contributions from the portion of the 
spectrum to the left of the window (Region I) are negligible, and the 
contributions from the portion to the right (Region 111) are constant. 

3. INVERSION 

We now use the insights just gained to design the algorithm in such a 
way that it successfully deals with the instabilities that would arise if 
the complete set of experimental data were included in the inversion. 
We first consider the case when the data are free of any experimental 
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62 1. EMRI AND N. W. TSCHOEGL 

I I I I  

FIGURE 2 Three regions of C(r) and of H(T) 

error so that the algorithm may need to contend solely with the 
computational errors resulting from the finite resolving power of the 
computer. We next derive a typical least squares inversion algorithm 
operating on the complete data set in the presence of experimental 
(and computational) error, and pinpoint the sources of instabilities 
that arise in that case. 

3.1. Inversion in the Absence of Experimental Error 

Even if the data are not encumbered by experimental errors, it follows 
from the above discussion that G(t)  data to the right of log tk  contain 
no information on spectrum lines located more than two decades to 
the left of log T k , /  in Figure 1. Hence, spectrum lines to the left of 
log T ~ , ~  cannot be retrieved from G(t) data to right of log t k .  
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VISCOELASTIC LINE SPECTRA 63 

However, it further follows that G(t) data to the left of log tk contain 
time-independent (constant) contributions from the spectrum lines 
located to the right of log Tk+.  It would appear that these spectrum 
lines could therefore be retrieved from G(t) data to the left of log tk. 

Nevertheless, as we shall now show, the inclusion of these data in the 
calculations is a source of instability even in the absence of 
experimental errors. 

To demonstrate this, let us consider that we deal with data that are 
far on the left side of G(t) in Figure 1, so that even computational 
errors are of the order of magnitude of the first sum in Eq. (5). Note 
that proceeding towards the left, H(T) becomes progressively smaller 
while G(t) increases. Thus Eq. (5 )  then reduces to 

i=N 

G ( t k )  = {G,} f Hi + X k .  
i=k+u+ 1 

This is tantamount to having subsumed any contributions below 
i = k + u + 1 into X k ,  the unavoidable computational error. All datum 
points G(ti< t k )  can be modeled in a similar manner. Since the 
spectrum is represented with N spectrum lines, we arbitrarily select N 
datum points for which ti 5 t k ,  yielding a set of N linear equations in 
N unknown Hi 's. 

In matrix form we have 

where 

is the (square) kernel matrix, 

1 1  
1 1  
. .  . .  . .  
1 1  

" 1 
" 1 
. .  . .  . .  
" 1 

(9) 
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and 

1. EMRl AND N. W. TSCHOEGL 

are the column vectors containing the spectrum lines, and the datum 
points, respectively. Since the kernel matrix is clearly singular, the set 
of equations has no solution. Hence, the use of data where the 
contribution of the spectrum lines is constant, necessarily leads to 
instabilities in the inversion even in the absence of experimental errors. 

3.2. Least Squares Algorithm Operating on the Complete 

To understand how the presence of experimental errors affects the 
inversion of equations of the type represented by Eq. ( I ) ,  we now 
develop a typical least squares algorithm that operates on the complete 
set of experimental data. It may be noted that this algorithm is 
essentially the least-squares Multidata Method of Cost and Becker [7], 
when the latter is recast in matrix form. 

Set of Data in the Presence of Experimental Errors 

Rewriting Eq. ( 3 )  for a general value of tj gives 

for each datum point in the presence of experimental and/or 
computational error. The (absolute) error, A,, is given by 

i=N 
( G p )  + Hi exp(-tj/q) 

i= I 

Minimizing the error sum of squares according to 

M 

j =  1 
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VISCOELASTIC LINE SPECTRA 65 

leads to 

M - as = - 2 C A j  eXp(-fj/Tn) f 0 

j =  1 

where H, is the spectrum line under consideration. Introducing Eq. 
(12)  into (14) and using the abbreviations 

Ej,n = eXp(-tj/4 (15) 

we single out the nth spectrum line to obtain 

Introducing the further abbreviations 

and 

the expression for the nth spectrum line becomes 

s1 - s2 - s3 
H, = Denom 
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where 
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M 

Denom = x [E,,n]2. (22) 
;= I 

We now proceed to pinpoint the source of the instability that 
renders the inversion of this algorithm an ill-posed problem. To do 
this, we split Eqs. (18), (19), and (20) into three parts. The first part 
will contain the data that lie to the left of the window, the second part 
those within the window, and the third part those to the right of the 
window. This leads to 

i=k-l i=k+u 

i=M 

j=k+u+ 1 

and 

i = k - / r  i=N 1 i=k+u 

j=k+u+l  Li=n+l I 

for the numerator and to 

for the denominator in Eq. (22). 
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VISCOELASTIC LINE SPECTRA 67 

In all four expressions the three terms entail data along G(t) that lie 
to the left, within, and to the right of the window. The symbols 1 and u 
indicate the number of datum points contained in the lower and upper 
portion of the window. 

Let us now consider a particular spectrum line, H(rn), located within 
the window so that log rn,l < log r,, < log T ~ , ~ .  Outside of the window 
the exponential function emulates the cut-off properties of the unit 
step function so that we may set 

and 

Thus, when the value of the kernel function becomes smaller than the 
experimental error, it is indistinguishable from 0 on the right hand 
side, and is equally indistinguishable from 1 on the left hand side. 
Utilizing these equations, we recast Eq. (23) to (26) as 

and 

j = k f u  

Denom = k - 1 + [ E j , J 2  

The sum in Eq. (32) contains the contribution within the window. This 
is always small in comparison to k-Z. Since Ej,n is always smaller 
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68 I .  EMRI AND N. W. TSCHOEGL 

than I ,  and k-1 is always larger, the value of the denominator is 
essentially equal to the number of datum points to the left of the 
window. Using Eqs. (29) to (31), Eq. (21) thus becomes 

Now, each experimental datum point can be expressed as 

where G(tj)  represents the value of the experimental datum point 
considered to be free of error, and A, denotes the experimental (and 
computational) errors that encumber C(r,). Equation (34) can there- 
fore be recast in the form 

1.e.. 
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VISCOELASTIC LINE SPECTRA 69 

Here H(T,,) represents the true value of the spectrum line, i.e., the first 
three terms on the right hand side of Eq. (35). The next term represents 
the error within the window and this is generally small in comparison 
with H(T,,). The last term contains the average error in the data to the 
left of the window. This average error is rather large. 

Equation (36) reveals the source of instabilities that arise upon 
inversion in the presence of experimental error. They arise from the 
last term in Eq. (36). Calculating a spectrum line H,, from the complete 
set of datum points will invariably contain the average experimental 
error from the data represented by that last term. Since the data on the 
left hand side can be up to lo3 to lo4 times larger than data on the 
right hand side, a 10% error will be vastly larger then the spectrum line 
that is being evaluated. Thus, the last term in Eq. (36) will dominate 
the first two. If the average error is negative, H,, may even become 
negative. 

4. THE WINDOWING (FILTERING) APPROACH 

We have shown that instabilities in the inversion of equations like Eqs. 
(1) or (2) can be avoided if only data within the window are used to 
calculate any given spectrum line. Thus, we need to exclude from the 
inversion algorithm those regions of the data in which any potentially 
useful information is overwhelmed by experimental and/or computa- 
tional errors. Using the windowing approach to omit these datum 
points from the calculations provides the “filtered” nth spectrum line 
as 

where the denominator is now given by 

j=k+u 

Denom = [E,,,,l2. 
j=k-l+l 
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This is essentially the algorithm that we had developed in the first of 
our papers [l]. The present paper deepens our understanding of why it 
is so simple and yet so effective. Although it is a least squares method 
(we call this the least squares absolute error approach), the calculations 
prove to be stable if the experimental error is not too severe. To 
contend with more serious experimental errors we found it expedient 
[3 ]  to minimize with respect to the relative error (we call this the least 
squares relative error approach). 

To demonstrate on hand of data that the procedure becomes 
unstable upon using data from the regions to the left and to the right 
of the window, i.e., the regions where Eqs. (27) and (28) apply, we use 
the synthetic 24-line spectrum displayed in Figure 3 that we had used 
earlier [3]. 

From this spectrum, we obtained source data, G(t), using 

1 0 ,  I 

Z 8 1  

' 7 1  

ou 
0 

Logz - seconds 
FIGURE 3 24-Line synthetic spectrum and G(t)  calculated from i t .  
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VISCOELASTIC LINE SPECTRA 71 

where Gg= lo9, G,= 104N/m2, and the Hi are the spectral strengths 
tabulated in the second column of Table I under the heading of Hi. 

Applying the Windowing Approach to these data produced the 
spectrum whose lines are shown in Table I under the heading Hi (ret) 
where (ret) marks these as retrieved values. Comparison of the two 
data columns shows that the algorithm satisfactorily reproduces the 
original spectrum. Now, if our theory is correct, then progressive 
widening of the window (or, in other words, widening of the pass band 
of the filter) should result in the emergence of some form of instability. 
Since our 24-line spectrum is synthetic, it is essentially free of 
experimental error. Any appearance of instabilities therefore demon- 
strates that these will arise even in the absence of experimental error 
because of the finite resolving power of the computer. 

The width of our window extended from log Xk,[= -0.6 to log Xk,u 

= 0.6. Because of the “goodness” of our synthetic data combined with 
the use of double precision in the calculations, instabilities showed up 
only when the width ranged from log Xk,[= -4.9 to log Xk,u=4.9. No 
instability appeared with a window that extended from log Xk,J = -4.8 
to log Xk,u=4.8. The onset was thus rather sudden. This is as it should 
be because, as already mentioned, with synthetic data instabilities may 
be expected to show up only when the resolving power of the computer 
is exceeded. 

The “unstable” spectrum is represented in Figure 4 by the solid 
lines. Windows extending from log Xk,l= -5.0 to log Xk,u= 5.0, and 

TABLE I 
times, T, are in seconds, spectral strengths, Hi, in N/m2) 

Input and retrieved values of the 24-line synthetic spectrum (Relaxation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

5.56098 
6.06039 
6.55851 
7.05261 
7.53421 
7.97847 
8.32259 
8.45919 
8.32259 
7.97847 
7.5342 1 
7.05261 

5.56206 
6.05983 
6.55885 
7.05252 
7.53422 
7.97847 
8.32259 
8.45919 
8.32259 
7.97847 
7.53421 
7.05261 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

6.55851 
6.06039 
5.56098 
5.061 17 
4.56123 
4.06124 
3.56125 
3.06125 
2.56125 
2.06125 
1.56125 
1.06125 

6.55851 
6.06039 
5.56100 
5.061 12 
4.56 137 
4.06080 
3.56256 
3.05734 
2.57257 
2.02682 
1.64320 
0.94864 
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0 2  
Il-L 

10 . 

Logt  - seconds 
FIGURE 4 Line spectrum calculated with different widths of Window I 

from log XkJ-5 .1  to log Xk,u=5.1 produced spectra that were 
identical with that shown. However, letting the window range from 
log Xk,J=-5 .2  to log X k,u=5.2 produced the singlet spectrum 
represented by the broken line in Figure 4. Further widening of the 
window from log X k , / =  -5.5 to log X k , u = 5 . 5 ,  and from log Xk,/=-6.0 
to log Xk,u= 6.0 reproduced the same singlet spectrum. 

These observations are specific for the (double) precision that was 
available in our computer. With another precision the outcome might 
be somewhat different. We have no doubt that the presence of even 
moderate experimenal error in non-synthetic data would have resulted 
in more severe instabilities and these would, in addition, have shown 
up with narrower windows than those where we found them in the 
results reported above. We do  not deem it necessary to repeat the 
exercise on non-synthetic experimental data since we had already 
shown that our algorithm produced entirely satisfactory results even in 
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VISCOELASTIC LINE SPECTRA 73 

the presence of the errors normally encountered [3] in experimental 
data. 

5. DISCUSSION 

An understanding of this paper requires a brief summary of the 
mechanics of the algorithm whose specific forms have been described 
earlier [I-41. These earlier publications should be consulted for 
details. We mention, however, that the number, N ,  of spectrum lines 
depends on M, the number of the available datum points. We found 
N =  2 to be a convenient number. Increasing this number decreases the 
number of datum points available per logarithmic decade of the 
relaxation times, r. The choice of T~ is somewhat arbitrary since it 
simply shifts the spectrum along the abscissa. A convenient choice is 
log T~ =log t l  where log tl is the location of the first datum point. 

Initially, the data are normalized and all spectrum lines are set to 
zero. We remark that the sum of the normalized spectrum lines must 
always add up to 1. In the first sweep through the data we start at the 
right-hand-side of the spectrum and calculate a provisional value for 
each line. We use linear regression to calculate the value, using only 
data within the window pertaining to that line. Instead of linear 
regression it would be possible to use Tikhonov regularization [6] (see 
Section 5.1) to refine the procedure but this does not seem to us to be 
necessary with the experimental errors commonly encountered. 

Next, we begin iterating to refine the provisional values. We once 
more start on the right-hand-side and sweep over four consecutive 
lines to the left. Since we are using 2 lines per decade, the fifth line to 
the left will be two decades away from the line under consideration. Its 
contribution will therefore be negligible (- 3 . 7 2 ~  lo--@). In calculating 
each line we again use only data within its window. If any line becomes 
negative during the iteration, it is set to zero and the iteration is 
repeated. Negative spectrum lines must be disallowed since such lines 
have no physical meaning. The iteration is abandoned when the 
changes in the line under consideration are smaller than the preset exit 
criterion. After a run of iterations is completed, we move left to the 
next line and repeat the procedure, finishing eventually with the first 
line on the left-hand-side of the spectrum. 
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74 I .  EMRI AND N .  W. TSCHOEGL 

To obtain the results reported here, we used the relaxation modulus, 
G(t),  featuring the exponential (transient) kernel function. 

K ( t ,  Ti) = exp(-t/q). (40) 

However, our discussion of the mechanics of the algorithm is equally 
valid for any other experimental response function whose kernel 
function has a shape identical with, or similar to, K( t ,  ri). Such 
response functions are the creep compliance, 

the storage modulus, 

and the loss modulus 

i=N 2 2  w T i  
J ’ (w)  = J!”’ - EL’ 

i= 1 1 + w 2 7 ? ’  

and the loss compliance 

i=N J”(w) = EL’ I 

I= I 1 Sw2.r;’  

The (operational) impulse responses, i.e., the relaxance, 

as well as their compliance counterparts, the storage compliance, 

(44) 

(45) 
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VISCOELASTIC LINE SPECTRA 75 

and the retardance, 

qualify also. In Eqs. (41), (44) and (45) the Li are compliance values 
representing the strengths associated with a particular retardation 
time, ri. 

The response to steady-state sinusoidal excitations contain the 
storage and loss kernels 

where w is the radian frequency, while responses to impulse excitation 
are characterized by the Laplace kernel 

where s is the Laplace transform variable. The kernels of the 
exponential, storage and impulse response functions share the 
property that they decay from a value of unity to a value of zero as 
t+O, w, s-ioo, respectively, as t-co, and w, s+ 0. K"(w, ri) possesses 
a maximum but can, nevertheless, be handled in a similar way to the 
others by operating separately on the two sides of the maximum [2].  
The modifications in the computational methods necessary when using 
the non-exponential kernels have been described in earlier publications 
[2-41. We remark that the speed with which convergence in the 
iteration is attained in our approach depends significantly on the 
nature of the kernel. The exponential kernel assures the most rapid 
convergence because its descent to zero is the steepest. The storage and 
the loss kernels descend progressively more slowly. Thus they require 
broader windows and need more time for convergence. Finally, the 
Laplace kernel is the least steep and the slowest to converge. 

We emphasize that the algorithm is not restricted to the linear 
viscoelastic response functions. It operates equally well on other 
experimental responses as long as their kernel functions behave as just 
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76 I. EMRI AND N. W. TSCHOEGL 

described. Response functions that immediately spring to mind are the 
dielectric response functions. 

We remark that a continuous spectral distributions can be obtained 
from a line spectrum by a rather simple calculation proposed by 
Baumgaertel and Winter [8]. 

Two additional aspects require attention. The first is concerned with 
other approaches within the realm of linear viscoelasticity designed to 
effectively circumvent the instabilities inherent in the inversion. The 
second takes a look in the light of the Windowing Approach at the 
traditional methods of deriving approximations to the spectra through 
graphical differentiation or finite difference calculus. 

5.1. Other Approaches 

In contrast to ours, all other methods designed to overcome the ill- 
posedness of the inversion problem make use of the complete set of 
data. In order to quash the data in trouble-causing regions, they thus 
require methods more sophisticated than the least squares (linear 
regression) approach we use. 

Of such methods the work of Honercamp and coworkers [9- 141 is 
probably the most significant. In essence, these workers use Tikhonov 
regularization [6]  in which weighting functions effectively suppress 
those data that our approach avoids entirely. Their method is 
efficacious but appears to us to require an unnecessary amount of 
effort resulting in slow conversion. In addition, and perhaps more 
significantly, their methods require a priori estimates of experimental 
errors. Recently, Yanovsky, Basistov, and Siginer [15] have pointed 
out some of the shortcomings of all methods based on Tikhonov 
regularization, such as the need for having a priori estimates of 
experimental errors. Their new method is free from this requirement 
(as is ours). 

The approach of Baumgaertal and Winter [ 161 appears to avoid 
instabilities by judicially positioning the spectrum lines. This is not 
only time consuming but necessarily produces unequally spaced 
spectra that introduce “steps” in the reconstructed response functions 
where no physical reasons for these steps exist. 

More recently, Mead [17] has developed an algorithm for use with 
rheodictic materials. His algorithm does not use error bounds as the 
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VISCOELASTIC LINE SPECTRA 77 

a priori information required to solve ill-posed problems. Instead, it 
makes use of the relations 

i= 1 

and 

i= 1 

This algorithm will clearly only succeed if qf and J,“ have been 
determined independently, or if the data span a sufficiently large 
portion of the logarithmic time scale to extend effectively from minus 
to plus infinity. Synthetic data can satisfy the latter condition. 
Experimental data will almost never cover a wide enough range and 
the summations will give incorrect estimates [18] of qf and J,“. 

We remark finally that all methods based on matrix inversion such 
as the collocation method [19] and improvements thereof such as the 
multidata method [7] will work more or less successfully only with data 
that are effectively free of experimental error. 

5.2. Traditional Methods 

Turning attention now to the traditional “approximation” methods 
[5 ] ,  the first thing to recognize is that these methods are not concerned 
with line spectra but furnish discrete data sets that represent 
continuous approximations to the spectra. The most common method 
of obtaining approximations to a continuous linear viscoelastic 
spectrum from experimental data is through logarithmic differentia- 
tion. Thus, the first approximation to the relaxation spectrum, H,(T) is 
obtained from 

The reason that this approach works at all is due to the fact that each 
point of the approximation is obtained from a single experimental 
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78 I. EMRI AND N. W. TSCHOEGL 

datum point. This calculation is local, representing, as it were, a 
window of zero width. Consecutively higher approximations can - in 
principle - be obtained by calculating logarithmic derivatives of 
successively higher order. Each order produces a bell-shaped spectrum 
of successively narrower width. This is easily verified on hand of an 
analytic expression that is infinitely differentiable in principle, such as 
the equation for the so-called standard linear model or 3-parameter 
Maxwell model given by [ 5 ]  

G(t )  = G, + G exp(-t/r). (53) 

Only a derivative of infinite order produced in a computer of infinite 
resolving power - if such were possible - would produce a “true” 
continuous spectrum. From the windowing point of view the 
important aspect is that these calculations would always remain local, 
i.e, within a window of zero width. 

The situation is different with the methods based on finite difference 
calculus [ 5 ] .  Here, the approximation of first order to the relaxation 
spectrum is obtained from 

where log h is a suitably chosen spacing on the log t- axis, and /31), is 
called a spectral shift factor. Each approximation of successively 
higher order requires successively more data to the left and right of the 
point at which the spectrum is calculated. Thus, the approximation of 
the second order becomes 

( 5 5 )  
hG(t) - ( h  + l )G(h t )  + G(h2t) 

( h -  1)lnh H2h ( . /ah)  = 

With each higher order of approximation there is thus a loss of 
information at the ends of the data set. In addition, an increase in the 
order of differentiation is tantamount to a widening of the effective 
window and would eventually necessarily lead to the appearance of 
instabilities, quite apart from reducing the width of the spectrum. 
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VISCOELASTIC LINE SPECTRA 79 

6. CONCLUDING REMARKS 

The difference between the windowing (filtering) and the various 
regularization approaches used by others lies in the way in which the 
troublesome regions are weighted. A window in the filtering approach 
constitutes effectively a box-shaped weighting function. Since this 
information is part of the algorithm itself, no additional information 
needs to be supplied by the user. Thus, the windowing approach may 
be seen to be equivalent to a fast, simplified Tikhonoff regularization. 

References 

[I] Emri, I. and Tschoegl, N. W. (1993). Rheol. Acta, 32, 31 -32. 
121 Tschoegl, N. W. and Emri, I. (1993). Rheol. Acta, 32, 322-327. 
[3] Emri, I. and Tschoegl, N. W. (1994). Rheol. Acta, 33, 60-70. 
[4] Tschoegl, N. W. and Emri, I. (1992). Intern. J .  Polym. Muter., 18, 117- 127. 
[5] Tschoegl, N. W. (1989). The Phenomenological Theory of Linear Viscoelastic 

Behavior (Springer-Verlag, Heidelberg). 
[6] (a) Tikhonov, A. N. and Arsenin, V. Y. (1977). Solution of Ill-Posed Problems, 

(V. H. Winston, Washington, D. C.) .  (b) Groetsch, C. W. ( I  993). Inverse Problenw 
in Mathematical Science, Vieweg, Wiebaden. 

[7] Cost, T. L. and Becker, E. B. (1970). Intern. J .  Num. Methods in Engg., 2, 207. 
[8] Baumgaertel, M. and Winter, H. H. (1992). J.  Non-Newtonian Fluid Mech., 44, 

(91 Elster, C. and Honercamp, J. (1991). Macromolecules, 24, 310-314. 
[lo] Elster, C. and Honercamp, J.  (1992). J .  Rheology, 36, 91 1-927. 
1111 Elster, C., Honercamp, J.  and Weese, J. (1991). J .  Rheol. Acta, 31, 161-174. 
[12] Honercamp, J.  (1989). Rheol. Acta, 28, 363-371. 
1131 Honercamp, J. and Weese, J.  (1989). Macromolecules, 22, 4372-4377. 
[I41 Honercamp, J.  and Weese, J. (1993). Rheol. Acta, 32, 65-73. 
[15] Yanovsky, Yu. G., Basistov, Yu. A. andSiginer, D. A. (1996). Int. J .  Eng. Sci., 34, 

[16] Baumgaertel, M. and Winter, H. H. (1989). Rheol. Acta, 28, 511-519. 
[ 171 Mead, D. W. (1994). J. Rheology, 38, 1769- 1795. 
[I81 Emri, I. and Tschoegl, N. W. (1993). J. Rheology, 37, 1103- 1 116. 
[19] Schapery, R. A. (1962). Proc. Fourth US. Nat. Congr. Appl. Mech., 2, 107. 

15-30. 

1221 - 1245. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
2
7
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1


